ORIGINAL PAPER

Development of a new diagnostic marker for growth habit selection in faba bean (*Vicia faba* L.) breeding

C. M. Avila · S. G. Atienza · M. T. Moreno · A. M. Torres

Received: 29 January 2007/Accepted: 10 August 2007/Published online: 9 September 2007 © Springer-Verlag 2007

Abstract Faba bean varieties with determinacy of the apical meristem are relevant to green production. A diagnostic CAPS (cleavage amplification polymorphic sequence) marker for determinate growth habit (ti) in faba bean was previously developed by Avila et al. (Mol Breed 17:185-190, 2006) but was effective only on a limited range of cultivars or genotypes. In this study, we studied the reasons for this limited application and developed a new marker useful for most faba bean-breeding programs. By designing a new set of primers, the complete genomic Vf_TFL1 sequences from different genotypes contrasting for the character were obtained and additional base changes associated with the ti phenotype were identified. The comparison among faba bean sequences showed that the previous CAPS marker was based on a SNP (single nucleotide polymorphism) at position 469 in the intron 2–3, a silent mutation. On the contrary, a SNP at position 26 that distinguishes determinate and indeterminate growth habit genotypes lead to an amino acid change (Leu-9 to Arg) in the determinate growth habit genotypes that could account for the ti phenotype. A dCAPS marker based on this SNP that creates a *TaqI* site in the *ti* allele was developed. The

Communicated by D. Hoisington.

C. M. Avila (🖂)

S. G. Atienza

Departamento de Mejora Genética Vegetal, IAS-CSIC, Apdo. 4084, 14080 Córdoba, Spain

M. T. Moreno · A. M. Torres

Area de Mejora y Biotecnología, IFAPA-Centro Alameda del Obispo, Junta de Andalucía, Apdo. 3092, 14080 Córdoba, Spain

marker was 100% successful in predicting *ti* phenotypes in a broad range of faba bean germplasm representing all major cultivars historically grown in Europe. The outcome confirms the utility of the new dCAPS in worldwide marker-assisted selection programs.

Introduction

The development of determinate growth habit faba bean (*Vicia faba* L.) varieties has been the objective of different breeding programs around the world (reviewed by Robertson and Filipetti 1991; reviewed by Huyghe 1998; Nadal et al. 2005). A determinate plant type is characterized by a terminal inflorescence where the stem growth abruptly terminates after four to five flowering nodes. This results in a considerable reduction of plant height and lodging and promotes better partition of assimilates between vegetative and reproductive growth and consequently, an increase in harvest index. Moreover, pod ripening is concentrated in time and space, which facilitates crop management and mechanical harvesting.

This trait is relevant to the fresh market (canning or freezing) that traditionally uses major faba bean types with indeterminacy of the apical meristem resulting in high cost for manual harvesting and logistic constraints at harvesting time (Nadal et al. 2005).

Several faba bean mutants with determinate growth habit have been described (Sjodin 1971; Filipetti 1986; Steuckardt et al. 1982). A single gene is responsible for the character (Sjodin 1971; Filipetti 1986) and the recessive allele conferring determinate growth habit was named *ti* (standing for terminal inflorescence). Recently, Avila et al. (2006) demonstrated that an ortholog of *CEN/TFL1*-like

Departamento de Genética-ETSIAM, Universidad de Córdoba, Edificio Mendel, Campus de Rabanales, 14071 Córdoba, Spain e-mail: ge2avgoc@uco.es

genes is responsible for the character in *V. faba. CEN/ TFL1*-like genes are extensively recognized as a group of homologous genes responsible for growth habit in different plant species. The *CENTRORADIALIS* (*CEN*) was first cloned in *Anthirrhinum* (Bradley et al. 1996). Next, several orthologs have been described in other plant species such as *Arabidopsis*, *TERMINAL FLOWER* 1 (*TFL1*) (Bradley et al. 1997), tomato, *SELF PRUNING* (*SP*) (Pnueli et al. 1998), tobacco (*CET*) (Amaya et al. 1999), *Lolium perenne* (*LpTFL1*) (Jensen et al. 2001), pea (*PsTFL1-a*) (Foucher et al. 2003), and more recently in citrus (*CsTFL1*) (Pillitteri et al. 2004) and rice (*RCN*) (Zhang et al. 2005).

Using a candidate gene approach, we developed a diagnostic CAPS marker useful for selecting determinate growth plants among the parental lines involved in our faba bean-breeding program (Avila et al. 2006). Diagnostic markers have the significant advantage of being completely linked with the trait being selected. Since they are designed on the gene sequence, no recombination between the marker and the trait is possible for greatly improving the selection efficiency. Nevertheless, they may represent natural polymorphism that does not affect gene function. For this reason, diagnostic markers still require independent validation in the new lines to be used in a breeding program. Actually, in our routine analysis with this marker several false positives were detected when the CAPS marker was assayed in additional genetic backgrounds.

The aim of the present study was to assess the usefulness of the CAPS marker described by Avila et al. (2006) and further develop new molecular markers linked to Ti with a more extensive application. For this purpose, we obtained the entire genomic Ti sequences from different faba bean genotypes contrasting for the character and identified additional bases changes, such as single nucleotide polymorphisms (SNPs), which might be accounting for the tiphenotype in order to develop more efficient markers for selection. The relationship between the Ti sequence (Vf_TFL1) and others CEN/TFL1-like genes obtained from the databases was also studied to provide an insight into the conservation and diversification of the gene.

Materials and methods

Plant material

In order to study the effectiveness of the CAPS marker developed by Avila et al. (2006) to predict the growth habit phenotypes, 36 new inbred lines and varieties from the germplasm collection at INRA-URLEG (Dijon, France), kindly provided by Dr. Gerard Duc, were analyzed.

To obtain the whole genomic sequence of the gene determining the growth habit in faba bean (Ti), we

analyzed four determinate growth habit genotypes (ti): the Spanish cultivars "Alargá", "Verde Bonita" and "Retaca" developed and released by IFAPA-Centro "Alameda del Obispo" and the inbred line Vf2 from the faba bean collection at IFAPA-Centro "Alameda del Obispo". As wild-type genotypes (Ti) we used three inbred lines: 2N52, described as rust resistant (Sillero et al. 2000; Avila et al. 2003); line 29H ascochyta blight resistant (Sillero et al. 2006), and Vf6 from the faba bean collection at IFAPA.

CAPS analysis

The analysis of the CAPS marker was performed as described by Avila et al. (2006).

Primer design

The complete genomic sequence of the gene *Ti* was amplified using two primer pairs named hereafter primer set 1 and primer set 2. Primer set 1, previously designed by Avila et al. (2006), allows amplification of a DNA region from exon 2 to the end of the exon 4, including introns 2–3 and 3–4. Primer set 2 was designed based on conserved domains identified after the alignment of published nucleotide sequences *CEN/TFL1* homologs using the *PsTFL1a* sequence as a template since this was the most faba bean related sequence retrieved from genebank databases. The forward TFL1-C primer (5'-ATGGCAAGAATGGCTCA AGAAC-3') and the reverse TFL1-D (5'-CCTGGAA TATCTGTCACAATC-3' amplified exons 1 and 2 and the beginning of the exon 3 (Fig. 1).

DNA extraction, PCR conditions, cloning and sequencing

Genomic DNA was extracted according to the protocol by Torres et al. (1993). PCR amplification was performed with 50 ng of genomic DNA as template in a volume of 25 μ l using the AmpliTaq Gold with Gene Amp kit and the recommendations of the suppliers (Applied Biosystems, manufactured by Roche, Brachburg, NJ, USA). PCR conditions for primer set 1 were as described by Avila et al. (2006) while for primer set 2, the thermal profile was an initial denaturation at 94°C for 10 min followed by 30 cycles of 94°C for 45 s, 58°C for 1 min, and 72°C for 45 s with a final extension of 7 min at 72°C.

The amplification products were ligated and transformed with the pGEM-T Easy Vector System I (Promega Corporation, USA), and nucleotide sequence was determined **Fig. 1** Derived cleaved amplified polymorphic sequence (dCAPS) marker for detection of the one-base substitution at the first exon of the *Ti* gene

Ti: one fragment (120 bp) *ti*: two fragments (98bp and 22bp)

using a BigDye terminator cycle sequencing v 3.1 kit (PE Biosystems, Foster City, CA) on an ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA) at the Servicio de Secuenciación Automática de DNA, SCAI (University of Córdoba, Spain).

Sequence analysis

The complete sequence of the faba bean *TFL1* gene for seven genotypes (four determinate growth habit genotypes and three wild type lines) was obtained. These sequences were aligned using the program CLUSTAL X (Thompson et al. 1997) to investigate the presence of extended base changes or SNPs. *PsTFL1a*, a *TFL1* homolog in pea, was also included in the alignment to investigate the sequence conservation between *TFL1* in faba bean and pea. Next, the predicted amino acid sequences were aligned to identify any amino acid changes caused by the SNP previously detected.

Finally, a phylogenetic tree of *TFL1*-related proteins was constructed using the NJ method with the program CLUSTAL X and the following sequences: *TSF* (AB027506); *FT* (AB027504); *CiFT* (AB027456); *MFT* (AF147721); *BFT* (NM125597); *PsTFL1a* (AY340579); *Ps_TFL1c-LF* (AY343326); *Bn TFL1-1* (AB017525); *TFL1* (U77674); *CET4* (AF145261); *CET2* (AF145260); *CET1* (AF145259); *SP* (U84140); *CEN* (S811193); *ATC* (AB024715); *RCN3* (AF159883); *RCN1* (AF159882) and the wild type line 2N52.

dCAPS analysis

To detect a one-base substitution by derived cleaved amplified polymorphic sequence (dCAPS) analysis (Neff et al. 1998), a mismatch primer *Ti*-dCAPS Fw (5'-CAAGAATGGCTCAAGAACCTC-3') that generates a TaqI site specifically in the ti allele was constructed (Fig. 1). PCR amplification using the primer pair Ti-dCAPS Fw and Ti-dCAPS Rev (5'-TGGTGTTGATAGTGGAAGGGA) was performed with 50 ng of genomic DNA as template in a volume of 25 µl using the AmpliTaq Gold with Gene Amp kit and the recommendations of the suppliers (Applied Biosystems, manufactured by Roche, Brachburg, NJ, USA). Cycling conditions consisted of an initial denaturation step at 94°C for 10 min followed by 30 cycles of 94°C for 35 s, 58°C for 30 s, and 72°C for 20 s that ended at 72°C for 7 min. Ten microliters of each PCR product were digested with TaqI in a total volume of 25 µl at 65°C for 2 h. After digestion, each sample was electrophoresed in a 2.5% agarose gel. The applicability of the new markers was studied in the INRA-URLEG collection.

Accession numbers

The sequence data described herein have been submitted to NCBI/GenBank data libraries with accession numbers EF193847 (2N52), EF193848 (Alargá), EF193849 (Verde Bonita), EF193850 (Vf2), EF193951 (Vf6) and EF193952 (29H).

Results

Testing the CAPS marker for growth habit in faba bean

The CAPS marker previously developed on the Ti gene to select growth habit in faba bean was useful for the parental lines involved in our breeding program (Avila et al. 2006). Nevertheless, after testing its effectiveness in predicting phenotypes using new parental lines, several genotypes did not show the expected restriction patterns. Actually, the

wild type line Vf6, used in several mapping studies by our group, revealed the restriction pattern corresponding to a *ti* genotype. This result emphasizes the need to perform marker validation to asses the efficiency of any marker in different genetic backgrounds.

For this purpose we assayed the CAPS marker in a faba bean collection kindly provided by Dr. Gerard Duc from INRA-URLEG (Dijon, France). The collection included 35 indeterminate growth habit and 1 determinate growth habit genotypes. Line TICOL 1191 (the only one with terminal inflorescence), revealed the expected restriction pattern that unexpectedly shared 15 indeterminate growth habit plants (Table 1).

Obtaining the sequence of Vf_TFL1

To isolate the complete genomic TFL1-related sequence in faba bean, we used the primers reported by Avila et al. (2006), referred as primers set 1 to amplify the sequence coding from the amino acid 75 to 174 and the corresponding introns. The amplification product comprises

Table 1 Validation test of the available diagnostic merkers for	European inbred lines	Growth habit observed	Expected phenotype ^a	
growth habit selection in faba			CAPS	dCAPS
bean (<i>Vicia jaba</i> L.) using a European inbred line collection	AD23 MAINTENEUR 2300	Indeterminate	D	Ι
	G58 MAINTENEUR 2302	Indeterminate	D	Ι
	GLORIA 2308	Indeterminate	NA	Ι
	19 TB ÓT 2316	Indeterminate	Ι	Ι
	DIVINE 44.2 2391	Indeterminate	Ι	Ι
	MELODIE M 2393	Indeterminate	Ι	Ι
	LADY 2401	Indeterminate	D	Ι
	19 TB T 2317	Indeterminate	Ι	Ι
	FABIOLA ÓT 2318	Indeterminate	Ι	Ι
	FABIOLA T 2319	Indeterminate	D	Ι
	POUILLY 2327	Indeterminate	Ι	Ι
	DIVA 2366	Indeterminate	Ι	Ι
	DISCO 2390	Indeterminate	D	Ι
	MAXIME 196	Indeterminate	Ι	Ι
	AQUITAINE 267	Indeterminate	NA	Ι
	MARAIS POITEVIN 276	Indeterminate	NA	Ι
	GERS 277	Indeterminate	D	Ι
	LORRAINE 279	Indeterminate	D	Ι
	PICARDIE 437	Indeterminate	NA	Ι
	DIANA 455	Indeterminate	D	Ι
	WIERBOON 704	Indeterminate	D	Ι
	MIKKO 1179	Indeterminate	D	Ι
	TICOL 1191	Determinate	D	D
	STRUBE 1216	Indeterminate	D	Ι
	OPTICA 1482	Indeterminate	NA	Ι
	BOURDON 1505	Indeterminate	D	Ι
	WEBO 1508	Indeterminate	Ι	Ι
	TROY 1579	Indeterminate	NA	Ι
	CÔTE D'OR 1626	Indeterminate	Ι	Ι
<i>I</i> indeterminate growth habit, <i>D</i> determinate growth habit, <i>NA</i> no amplification ^a Expected phenotype attending the restriction pattern obtained using the CAPS marker developed by Avila et al. (2006) and the dCAPS developed in the present study	HG115 1757	Indeterminate	Ι	Ι
	ASCOTT 1777	Indeterminate	Ι	Ι
	TALO 1795	Indeterminate	NA	Ι
	SORAVI 2070	Indeterminate	NA	Ι
	BLANDINE 2073	Indeterminate	D	Ι
	POLLEN 2074	Indeterminate	D	Ι
	MAYA 2077	Indeterminate	NA	Ι

exons 3, 4, part of exon 2 and the introns 2–3 and 3–4. Besides, a new primer pair (primer set 2) corresponding to conserved domains identified from the alignment of published TFL1/CEN homologs were designed to obtain the amplification of exons 1, 2 and the beginning of the third exon (from amino acid 1 to 95). Primer set 2 was designed using the *PsTFL1a* sequence as a template since this was the most faba bean related sequence retrieved from genebank databases. The new TFL1 faba bean sequence will be referred as Vf_TFL1 hereafter.

Using primer set 1, a single amplification product of 540 bp was obtained (Avila et al. 2006). Primer set 2 generated a band of 550 bp. Both amplicons were excised from the gel, cloned and sequenced in three wild type accessions (2N52, Vf6 and 29H) and four lines showing determinate growth habit ("Retaca", "Alargá", Vf2 and "Verde Bonita"). No differences between "Retaca" and "Alargá" sequences were found since they share the determinate growth habit donor. Therefore, we will only refer to "Alargá" in future.

The exon/intron boundaries were predicted on the basis of the *PsTFL1a* sequence (AY340579). *Vf_TFL1* complete sequences were obtained by consensus alignment of the sequences obtained from the amplification of primer set 1 and 2. Both amplicons share a fragment covering the region between amino acid 75 and 95 in exons 2 and 3 including intron 2–3 that allows inferring the entire *Vf_TFL1* sequence.

According to EuGene'Hom software (Foissac et al. 2003), *Vf_TFL1* is predicted to encode a protein of 174 amino acids. Faba bean wild type plants show 96% amino acid identity (167/174) with *PsTFL1a*, considering the six faba bean genotypes (Fig. 2). Out of the seven amino acid changes detected, three were identical among faba bean accessions (positions 128, 135 and 147) but different to *PsTFL1a*. Besides, the amino acid changes found at positions 14, 24 and 27 were found in a single faba bean variety: Vf2, 2N52 and "Verde Bonita", respectively (Fig. 2). Only the amino acid change at position 9 (Leu-9 to Arg) differentiates between determinate growth habit

and wild type genotypes, the latter being identical to *PsTFL1a*, which is characterized by indeterminacy of the apical meristem. For this reason, the SNP leading to this amino acid change was used to design a new dCAPS marker.

Studying the homology of the *Vf_TFL1* sequence with other *CEN/TFL1*-like genes

The Vf TFL1 sequence corresponding to the wild type faba bean line 2N52 was aligned with TFL1/CEN related sequences obtained from the databases. The phylogenic tree based on amino acid similarity revealed two clear groups corresponding to "CEN like" and "TFL1 like" sequences (Fig. 3). These results are in agreement with those reported by Foucher et al. (2003). Clustering of Vf_TFL1 pointed out that the sequence is not a member of the "CEN like" group but a TFL1 like sequence, forming a clade with *PsTFL1a* (AY340579) and PsTFL1c (AY340579) together with the remaining TFL1 like sequences: TFL1 (U77674) and Bn TFL1-1(AB017525). In addition to this, other members of the Arabidopsis TFL1 family, such as FT, TSF, and BFT (Mimida et al. 2001) are more distant (Fig. 3).

SNPs analysis

The 15 SNPs detected among faba bean lines are shown in Table 2. According to the intron/exon boundaries predicted and considering the complete sequence of Vf_TFL1 and the restriction pattern reported by Avila et al. (2006), the SNP leading to the CAPS marker previously reported is located in a non-coding region (Intron 2–3) at position 469 (Table 2). Therefore, this substitution seems to result from natural variation with no effect on the determinacy of the apical meristem because it was also found in the inbred line Vf6 (indeterminate genotype) and shares sequence with the determinate genotypes used in the study.

Fig. 2 Alignment of the deduced amino acid sequences of Vf_TFL1 sequences with determinate growth habit ("Verde Bonita", Vf2, "Alargá"), indeterminate growth habit (2N52, Vf6, 29H) and *PsTFL1a* from *Pisum* (Foucher et al. 2003). Identical amino acids

are indicated by an *asterisk*. The amino acid change differentiating between determinate and indeterminate growth habit is indicated by a *box*. The multiple alignments were generated with CLUSTAL X software

Fig. 3 Phylogenetic tree of *TFL1*-related proteins constructed using the NJ method with the program CLUSTAL X. Bootstrapping values higher than 500 are shown. The sequences used are indicated by the gene name and the NCBI number: *TSF* (AB027506); *FT* (AB027504); *CiFT* (AB027456); *MFT* (AF147721); *BFT* (NM_125597); *PsTFL1a* (AY340579); *PsTFL1c-LF* (AY343326); *BnTFL1-1* (AB017525); *TFL1* (ATU77674); *CET4* (AF145261); *CET2* (AF145260); *CET1* (AF 145259); *SP* (LEU84140); *CEN* (S811193); *ATC* (AB024715); *RCN3* (AF159883); *RCN1* (AF159882) and the *ti* mutant *Vf_TFL1* (EF193847) from 2N52

The unique SNP that allows distinguishing between determinate and indeterminate genotype was found at position 26, near to the 3' end of the sequence and was used to design a dCAPS marker as explained in the "Materials and methods". Figure 4 shows the restriction pattern corresponding to the new marker (*Ti*-dCAPS) which is able to unambiguously differentiate between mutants and wild type genotypes.

As for the CAPS marker, the new diagnostic marker was assayed in a distantly related germplasm collection (Table 1) showing 100% efficiency in selection. In both cases, genomic amplification with the dCAPS primers produced a single band of 120 bp. After restriction of this PCR fragment with *Taq*I, determinate genotypes revealed a smaller fragment (98 pb) while indeterminate individuals remained uncut (Fig. 4, Table 1).

Discussion

Diagnostic markers are those directly associated with the gene that influences the trait (Gale 2005). Since they are designed on the sequence of the gene responsible for the character being selected, it is expected that they do not require independent validation for each parental line used in a breeding program (Gale 2005). Our results have, however, shown that the development of diagnostic markers does not warrant their worldwide application unless the marker is designed in sequence changes that account for the target phenotype.

In this study, we assayed a diagnostic CAPS marker for the determination of growth habit in faba bean, reported by Avila et al (2006), in new accessions but several genotypes do not present the expected restriction patterns. Further screening of a faba bean collection from INRA-URLEG (Dijon, France) displayed numerous false positives, since the restriction pattern expected for determinate growth habit genotypes was found in several wild type individuals. These results revealed that the effectiveness of this CAPS marker is limited and further studies were necessary to develop a new diagnostic marker useful on a range of cultivars or genotypes. Besides, the outcome highlights the fact that even the molecular markers based on the gene responsible for the trait should be validated for routine screening for MAS since there is no guarantee that they will be useful in different backgrounds.

Avila et al. (2006) showed that an ortholog of CEN/ TFL1-like genes was responsible for the determinate growth habit in faba bean but did not investigate the sequence of this gene. Although CEN and TFL1 display a strong similarity in the amino acid sequence, both genes are not particularly closely related (Mimida et al. 2001). In fact, they have slightly different functions although they are derived from the same ancestral gene. TFL1 controls flowering time and maintains the fate of inflorescence meristem while CEN is involved only in the inflorescence maintenance (Bradley et al. 1996, 1997). Our results pointed out that the Vf_TFL1 sequence obtained in this study does not belong to the "CEN like" group. Thus, *Vf_TFL1* is a *TFL1*-like gene that formed a clade with the TFL1-like sequences included in the phylogenetic tree (Fig. 3). Consequently, Vf TFL1 plays an essential role in determining the inflorescence architecture (indeterminate or determinate), an important trait for valuable green production in faba bean. Besides, it may also regulate flower transition since tfl1 mutants in Arabidopsis display early

Table 2 Sequence analysis of Vf_TFL1 in the selected genotypes	Position	Location	Nucleotide substitution ^a	Mutant genotypes	Major effect ^b
	26	E_1	G/T	Vf2, 'Alargá', 'Verde Bonita'	Leu-9 to Arg
	40	E_1	G/A	Vf2	Val-14 to Met
	60	E_1	C/T	29H	Silent
	71	E_1	C/G	2N52	Thr-24 to Arg
	79	E_1	A/G	'Verde Bonita'	Lys-27 to Glu
	215	I ₁₂	C/T	2N52, 29H	
	236	I ₁₂	G/C	2N52	
	283-321	I ₁₂	Deletion	29H	
E exon, I intron	357	I ₁₂	G/T	29H	
^a The first nucleotide corresponds to the wild type while the second one opposes in	376	E ₂	C/T	Vf2	Silent
	463	I ₂₃	A/G	Vf2	
the mutant(s) genotype	469	I ₂₃	C/G	2N52, 29H	
^b "Silent" indicates that the	511	I ₂₃	T/A	2N52, 29H	
substitution has no effect at the	523	I ₂₃	Deletion	2N52, 29H	
amino acid sequence of the protein	691	E_4	C/A	2N52, 29H	Silent

Fig. 4 Visualization of growth habit specific dCAPS marker in faba bean lines. *Lines 1–7* correspond to the PCR amplification of the dCAPS primers without enzymatic digestion in lines 29H, 2N52, Vf6 (*Ti* genotypes) and Vf2, "Retaca", "Verde Bonita" and "Alargá"(*ti* genotypes). *Lines 8–14* correspond to the respective restriction pattern obtained after *Taq*I digestion in the same lines. Molecular weights are marked with *arrows*

flowering (Shannon and Meeks-Wargner 1991; Bradley et al. 1997).

The analysis of the complete Vf_TFL1 sequence determined that the CAPS marker previously reported was derived from a SNP located at position 469, within intron 2–3. Consequently, this substitution resulted in a silent mutation with no effect on the determinacy of the apical meristem.

Similar results were reported by Foucher et al. (2003) studying three homologs of the TFL1/CEN family (*PsTFL1a*, b and c). Sequencing of *PsTFL1a* in three independent *det* lines revealed mutations in the introns and exons regions, when compared with the wild type. Some of the SNPs were silent mutations but others significantly modify the *PsTFL1a* structure leading to a non-functional protein responsible for the determinate growth habit in the *det* mutants.

From the 15 SNPs detected among the faba bean lines, only one could discriminate between determinate and indeterminate genotypes. In this case, the mutation was found in exon 1 and involves a change at the amino acid sequence (Leu-9 to Arg), a residue notably conserved across the *CEN/TFL1*-like genes. The Leu is conserved in all *CEN/TFL1* sequences used in this study, including the most distantly related proteins such as *FT* and *TSF* from *Arabidopsis*. The high degree of conservation suggests that mutation of this Leu-9 might likely affect the *TFL1* function and could account for the *ti* phenotype.

Amino acid changes may affect the enzyme function and therefore the phenotype. Foucher et al. (2003) reported that single amino acid changes originate the determinate growth habit phenotype in two different pea mutants. The same findings have been reported in *Arabidopsis* (Oshima et al. 1997) and tomato (Pnueli et al. 1998). Furthermore, occasionally a single amino acid substitution promotes a change in the enzymatic function even between the homologous genes. For instance, Hanzawa et al. (2005) studied two 60% identical *Arabidopsis CEN/TFL1*-like genes homologs involved in clear and opposite functions showing that swapping a single amino acid is sufficient to convert a repressor to an activator of flowering and vice versa.

Other mutations at conserved positions are preserved among mutants for determinate growth habit in several species. This is the case of the replacement of Thr-6 by Ile in the *det-3* mutant in pea (Foucher et al. 2003), which is conserved in the *tfl1-14* mutant of *Arabidopsis* (Oshima et al. 1997). To our knowledge, the change Leu-9 to Arg described in this study has not been previously reported in any other species.

We have used a candidate gene approach based on the sequence of *PsTFL1a*, a *TFL1* homolog in pea, to develop a new dCAPS for efficient discrimination selection of

growth habit in faba bean. The methodology has proven successful due to the high conservation found between the pea and faba bean genes. Therefore, it is expected that the same methodology is applicable to other traits of interest for faba bean breeding.

The new diagnostic marker is expected to facilitate efficient detection of determinate growth habit genotypes in faba bean-breeding populations. Moreover it will play an important role during selection in pyramiding additional suitable genes to develop new cultivars for green production.

Acknowledgments C. M. Avila acknowledges financial support from "Juan de la Cierva" program from MEC (Ministerio de Educación y Ciencia). S.G. Atienza acknowledges financial support from 'Ramón y Cajal' program, also from MEC. This research was granted by projects PTR1995-0682-OP from MEC and RTA-04-067 from INIA (Instituto Nacional de Investigaciones Agrarias).

References

- Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRO-RADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1417
- Avila CM, Nadal S, Moreno MT, Torres AM (2006) Development of a simple PCR-based marker for the determination of growth habit in *Vicia faba* L. using a candidate gene approach. Mol Breed 17:185–190
- Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (*Vicia faba* L). Theor Appl Genet 108:1071–1078
- Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor Appl Genet 107:353–358
- Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in *Antirrhinum*. Nature 379:791–797
- Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in *Arabidopsis*. Science 275:80–83
- Filippetti A (1986) Inheritance of determinate growth habit induced in Vicia faba major by ethyl methane sulphonate (EMS). Fabis News 15:12–14
- Foissac S, Bardou P, Moisan A, Cros MJ, Schiex T (2003) EUGÈNE'HOM: a generic similarity-based gene finder using multiple homologous sequences. Nucleic Acids Res 31(13):3742–3745
- Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) Determinate and late flowering are two terminal flower1/centroradialis homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754
- Gale KR (2005) Diagnostic DNA markers for quality traits in wheat. J Cereal Sci 41:181–192
- Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102(21):7748–7753

- Huyghe C (1998) Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie 18:383–411
- Jensen CS, Salchert K, Nielsen KK (2001) A terminal flomer1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528
- Mimida N, Goto K, Kobayashi Y, Araki T, Ahn JH, Weigel D, Murata M, Motoyoshi F, Sakamoto W (2001) Functional divergence of the TFL1-like gene family in *Arabidopsis* revealed by characterization of a novel homologue. Genes Cells 6:327– 336
- Nadal S, Cabello A, Flores F, Moreno MT (2005) Effect of growth habit on agronomic characters in faba bean. Agric Conspect Sci 70(2):43–47
- Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in *Arabidopsis thaliana* genetics. Plant J 14:387–392
- Ohshima S, Murata M, Sakamoto W, Ogura F, Motoyoshi F (1997) Cloning and molecular analysis of the *Arabidopsis* gene *Terminal Flower 1*. Mol Gen Genet 254:186–194
- Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135:1540–1551
- Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125(11):1979–1989
- Robertson LD, Filippetti A (1991) Alternative plant types of faba bean. Options Mediterr 10:33–39
- Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892
- Sillero JC, Avila CM, Moreno MT, Rubiales D (2001) Identification of resistance to *Ascochyta fabae* in *Vicia faba* germplasm. Plant Breed 120:529–531
- Sillero JC, Moreno MT, Rubiales D (2000) Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathol 49:389–395
- Sjodin J (1971) Induced morphological variation in *Vicia faba* L. Hereditas 67:155–180
- Steuckardt R, Dietrich M, Griem H (1982) Ergebnisse von Kreuzungsanalysen mit terminalinfloreszenten (ti) Mutanten und daraus entwickelte Zuchtstamme bei Vicia faba L. Arch Züchtungsforsch 12:33–42
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
- Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen WD, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223– 253
- Torres AM, Weeden NF, Martin A (1993) Linkage among Isozyme, Rfip and Rapd Markers in *Vicia-Faba*. Theor Appl Genet 85:937–945
- Zhang SH, Hu WJ, Wang LP, Lin CF, Cong B, Sun CR, Luo D (2005) TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–1408